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Begin with a scientific question
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Z Which of 10,000 Drosophila genes
Inhibit virus growth?
N

] Option 1 Full Experiment
Find all genes that inhibit virus replication by at least 2x

(the effect size), as measured by a fluorescent reporter
Replicates: U E Cost: $$$3

[¥1 Option 2 Pre-screen

Count the number of genes with each effect size
Replicates: & Cost: $

Question When testing multiple hypotheses simultaneously, can we
estimate the number of positive effect sizes (discoveries) with fewer
samples than it takes to identify those discoveries?

Problem Statement

Formal Statement

Let v, be a distribution on R. Let f;, be the known parametric dis-
tribution of test statistics with effect size y, e.g. f, = N'(y,1).
Draw {p;}" ; ~ vi (unobserved) and {X;}" , ~ f,. (observed).

Goal
Estimate, for all v € R and without overestimating,

Cv, (1) ==y, (ui > y)
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Our Estimator

Let

F.(t) = 1y 1{X; <t} be the empirical CDF
F/(t) = Py, x~f, (X < t) be the true CDF under v

For any v € R, for a specified probability of overestimation «, our
estimator is given by

(1)

min

Cn(y) =
Uil | BBy |/ 282720

![Ymv(x)dx.

Prescreen with few replicates per gene
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Choose an experimental design
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Find all genes with effect size at least 1.5x
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Number of discoveries
at each effect size
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Guaranteed yield: At least 70 genes
Replicates: HE ] Cost: $$$$$

Find all genes with effect size at least 2x
Guaranteed yield: At least 17 genes
Replicates: HJHE  Cost: $$$$
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log(normalized fluorescence)
Distributed N(0, 1) under the null hypothesis
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Multiple hypothesis testing identifies no discoveries

Theoretical Results

Theorem. Fori=1,2,...,n,let u; ~ vi and X; ~ f,,, where each draw
1s iid. Let our simultaneous estimator be given by (1). Then,

P (3'}’ : grz(7) > Cu, (’)’)) < «.

Furthermore, with probability at least 1 — ¢, for all v € R and ¢ €
(0, &v., (7)] we have £y, (7y) — Cn(7y) < € whenever
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By the DKW inequality, the true CDF F,, is contained in the ¢, ball

around F,. If we find the v that stays inside this ball but has the least
mass above 7y (the minimizer of (1), shown by F, ), then with high
probability, this is a lower bound on {,, (7).

The sample complexity result follows from the DKW inequality and
the triangle inequality. We want to bound ||F, — Fy|| subject to the
constraints on v in (1), so we control it using the DKW bound on
|Fy, — ﬁn||m, and the constrained quantity ||F, — F,, || found in
the theorem statement.

2.0
Effect Size: Relative decrease in fluorescence

Our estimator indicates discoveries exist

2.5 _ . :
Find all genes with effect size at least 2.5x
Guaranteed yield: At least 17 genes

Replicates: JJE  Cost: $$$

Our Answer Yes. If we are testing n hypotheses and the effect sizes are
small, then we can detect the existence of discoveries with n times fewer
samples than we would need for identification.

Experimental Results

Data Two z-scores from gene knock-out
experiments on each of 13,071
Drosophila genes [1]

Bonferroni
-- corrected
critical value

Results
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Z-score  QOur estimator finds evidence of more
0.20 ) discoveries than multiple testing can
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g2 013 - s (ours identify, especially at small effect sizes
Sfotof \ | tues (dentiication) * MLE suggests there may be even more
85005 discoveries — but the MLE frequently
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Effect Size [1] Linhui Hao et al. “Drosophila RNAI screen identifies host genes important

for influenza virus replication”. In: Nature 454.7206 (2008), p. 890.
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Synthetic bata

Gausslian test statistics Poisson test statistics

Let v, = (1 —4)d0+ {+0,, and f, = N (i, 1),
as when the data are z-scores. The following
figure shows the probability of detecting at
least half of the discoveries, as a function of
both v, and s, for a fixed n = 10*.

Probability that C(0) is greater than «/2

Our estimator also works on non-
Gaussian data, as demonstrated here.
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