Estimating the Number and Effect Sizes of Non-null Hypotheses

Problem Statement

Formal Statement

Let ν_* be a distribution on \mathbb{R} . Let f_{μ} be the known parametric distribution of test statistics with effect size μ , e.g. $f_{\mu} = \mathcal{N}(\mu, 1)$. Draw $\{\mu_i\}_{i=1}^n \sim \nu_*$ (unobserved) and $\{X_i\}_{i=1}^n \sim f_{\mu_i}$ (observed).

Goal

Estimate, for all $\gamma \in \mathbb{R}$ and without overestimating,

$$\zeta_{\nu_*}(\gamma) := \mathbb{P}_{\nu_*} \left(\mu_i > \gamma \right)$$

Our Estimator

Let

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i \le t \} \text{ be the empirical CDF} \\ F_{\nu}(t) = \mathbb{P}_{\mu \sim \nu, X \sim f_{\mu}}(X \le t) \text{ be the true CDF under } \nu$$

For any $\gamma \in \mathbb{R}$, for a specified probability of overestimation α , our estimator is given by

$$\widehat{\zeta}_n(\gamma) = \min_{\nu: ||\widehat{F}_n - F_\nu||_{\infty} \le \sqrt{\frac{\log(2/\alpha)}{2n}}} \int_{\gamma}^{\infty} \nu(x) dx.$$
(1)

Jennifer Brennan, Ramya Korlakai Vinayak, Kevin Jamieson {jrb, ramya, jamieson}@cs.washington.edu

Theoretical Results

Theorem. For i = 1, 2, ..., n, let $\mu_i \sim \nu_*$ and $X_i \sim f_{\mu_i}$ where each draw is iid. Let our simultaneous estimator be given by (1). Then,

$$\mathbb{P}\left(\exists \gamma:\widehat{\zeta}_n(\gamma)>\zeta_{
u_*}(\gamma)
ight)\leq lpha.$$

Furthermore, with probability at least $1 - \delta$, for all $\gamma \in \mathbb{R}$ and $\varepsilon \in$ $(0, \zeta_{\nu_*}(\gamma)]$ we have $\zeta_{\nu_*}(\gamma) - \hat{\zeta}_n(\gamma) \leq \varepsilon$ whenever

$$n \geq \frac{\log\left(\frac{4}{\alpha\delta}\right)}{\left(\min_{\nu:\mathbb{P}_{\nu}((\gamma,\infty))\leq\zeta_{\nu_{*}}(\gamma)-\varepsilon}||F_{\nu}-F_{\nu_{*}}||_{\infty}\right)^{2}}.$$

By the **DKW inequality**, the true CDF F_{ν_*} is contained in the ℓ_{∞} ball around \widehat{F}_n . If we find the ν that stays inside this ball but has the *least* mass above γ (the minimizer of (1), shown by $F_{\nu_{min}}$), then with high probability, this is a lower bound on $\zeta_{\nu_*}(\gamma)$.

The sample complexity result follows from the DKW inequality and the triangle inequality. We want to bound $||F_{\nu} - \widehat{F}_n||_{\infty}$ subject to the constraints on ν in (1), so we control it using the DKW bound on $||F_{\nu_*} - \widehat{F}_n||_{\infty}$, and the constrained quantity $||F_{\nu} - F_{\nu_*}||_{\infty}$ found in the theorem statement.

PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

Synthetic Data

Gaussian test statistics

Let $\nu_* = (1 - \zeta_*)\delta_0 + \zeta_*\delta_{\gamma_*}$ and $f_{\mu} = \mathcal{N}(\mu, 1)$, as when the data are z-scores. The following figure shows the probability of detecting at least half of the discoveries, as a function of both γ_* and ζ_* , for a fixed $n = 10^4$.

Poisson test statistics

Our estimator also works on non-Gaussian data, as demonstrated here.

Data Two z-scores from gene knock-out experiments on each of 13,071

- Our estimator finds evidence of more discoveries than multiple testing can identify, especially at small effect sizes
- MLE suggests there may be even more discoveries – but the MLE frequently

[1] Linhui Hao et al. "Drosophila RNAi screen identifies host genes important for influenza virus replication". In: Nature 454.7206 (2008), p. 890.

