Motivation

Video storage and indexing for efficient query processing.

Query: Run license plate detection on all cars.

- **Decode car pixels** → **Run license plate detector**
 - Decode the entire frame
 - Easy to store as encoded video
 - Decode many irrelevant pixels
 - Decode only the car pixels
 - Difficult to store as encoded video
 - Decode only relevant pixels
 - Use tiling to decode only the region of the frame that contains car pixels
 - Easy to store as encoded video
 - Decode few irrelevant pixels

Strategy

- Split up video frames into independently decodable regions called “tiles”
- Set the tile layout using one of the following approaches:
 - Approach 1: Uniform tiles
 - Approach 2: Non-uniform tiles around objects
 - 2.1: Large tiles around groups of objects
 - 2.2: Small tiles around individual objects
- Set the layout for a group of frames and update periodically
- Speed up queries by only decoding the tiles that contain pixels for a given query

Preliminary Results

- Run queries on videos from the Netflix public data set to decode pixels for particular object types (e.g. “person”, “car”)
- Compare uniform tile layouts to layouts picked based on the locations of pixels being decoded
- Study the effect of updating the custom layouts after different durations

Effect of tiling on decode time

- Uniform tiles
- Tiles around the object being queried
- Tiles around an object other than the query object

Observations

- Custom tile layouts reduce decoding time
- Tile layouts optimized for pixels different from the ones being queried can hurt performance

Effect of tiling on quality and storage size

- Custom tile layouts generally have better quality than uniform tiles (PSNR above 40 is considered lossless)
- Custom tile layouts sometimes lead to larger storage sizes. The size of the tiles depends on how they are encoded

Acknowledgements

This work is supported by the NSF through award CCF-1703051

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Example video frame from UA-Detrac: http://detrac-db.rit.albany.edu